Laguerre polynomials

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 – 1886), are the canonical solutions of Laguerre's equation:



x\,y'' %2B (1 - x)\,y' %2B n\,y = 0\,

which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer. The Laguerre polynomials are also used for Gaussian quadrature to numerically compute integrals of the form

\int_0^\infty f(x) e^{-x} \, dx.

These polynomials, usually denoted L0L1, ..., are a polynomial sequence which may be defined by the Rodrigues formula



L_n(x)=\frac{e^x}{n!}\frac{d^n}{dx^n}\left(e^{-x} x^n\right).

They are orthogonal to each other with respect to the inner product given by

\langle f,g \rangle = \int_0^\infty f(x) g(x) e^{-x}\,dx.

The sequence of Laguerre polynomials is a Sheffer sequence.

The rook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables.

The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom.

Physicists often use a definition for the Laguerre polynomials that is larger, by a factor of n!, than the definition used here. (Furthermore, various physicist use somewhat different definitions of the so-called associated Laguerre polynomials, for instance in [Modern Quantum mechanics by J.J. Sakurai] the definition is different than the one found below. A comparison of notations can be found in [Introductory quantum mechanics by R.L. Liboff].)

Contents

The first few polynomials

These are the first few Laguerre polynomials:

n L_n(x)\,
0 1\,
1 -x%2B1\,
2 {\scriptstyle\frac{1}{2}} (x^2-4x%2B2) \,
3 {\scriptstyle\frac{1}{6}} (-x^3%2B9x^2-18x%2B6) \,
4 {\scriptstyle\frac{1}{24}} (x^4-16x^3%2B72x^2-96x%2B24) \,
5 {\scriptstyle\frac{1}{120}} (-x^5%2B25x^4-200x^3%2B600x^2-600x%2B120) \,
6 {\scriptstyle\frac{1}{720}} (x^6-36x^5%2B450x^4-2400x^3%2B5400x^2-4320x%2B720) \,

Recursive definition

We can also define the Laguerre polynomials recursively, defining the first two polynomials as

L_0(x) = 1\,
L_1(x) = 1 - x\,

and then using the following recurrence relation for any k ≥ 1:

L_{k %2B 1}(x) = \frac{1}{k %2B 1} \left( (2k %2B 1 - x)L_k(x) - k L_{k - 1}(x)\right).

Generalized Laguerre polynomials

The polynomial solution of differential equation[1]


x\,y'' %2B (\alpha %2B1 - x)\,y' %2B n\,y = 0

is called generalized Laguerre polynomials, or associated Laguerre polynomials. The Rodrigues' formula for them are

L_n^{(\alpha)}(x)=

{x^{-\alpha} e^x \over n!}{d^n \over dx^n} \left(e^{-x} x^{n%2B\alpha}\right).

The simple Laguerre polynomials are recovered from the generalized polynomials by setting α = 0:

L^{(0)}_n(x)=L_n(x).

Explicit examples and properties of generalized Laguerre polynomials

 L_n^{(\alpha)}(x)�:= {n%2B \alpha \choose n} M(-n,\alpha%2B1,x).
When n is an integer the function reduces to a polynomial of degree n. It has the alternative expression[3]
L_n^{(\alpha)}(x)= \frac {(-1)^n}{n!} U(-n,\alpha%2B1,x)
in terms of Kummer's function of the second kind.
 L_n^{(\alpha)} (x) = \sum_{i=0}^n (-1)^i {n%2B\alpha \choose n-i} \frac{x^i}{i!}
(derived equivalently by applying Leibniz's theorem for differentiation of a product to Rodrigues' formula.)


\begin{align}
L_0^{(\alpha)} (x) & = 1 \\
L_1^{(\alpha)}(x) & = -x %2B \alpha %2B1 \\
L_2^{(\alpha)}(x) & = \frac{x^2}{2} - (\alpha %2B 2)x %2B \frac{(\alpha%2B2)(\alpha%2B1)}{2} \\
L_3^{(\alpha)}(x) & = \frac{-x^3}{6} %2B \frac{(\alpha%2B3)x^2}{2} - \frac{(\alpha%2B2)(\alpha%2B3)x}{2}
%2B \frac{(\alpha%2B1)(\alpha%2B2)(\alpha%2B3)}{6}
\end{align}
L_n^{(\alpha)}(0)= {n%2B\alpha\choose n} \approx \frac{n^\alpha}{\Gamma(\alpha%2B1)};
L_n^{(\alpha)}(x) \approx \frac{n^{\frac{\alpha}{2}-\frac{1}{4}}}{\sqrt{\pi}} \frac{e^{\frac{x}{2}}}{x^{\frac{\alpha}{2}%2B\frac{1}{4}}} \cos\left[2 \sqrt{x \left(n%2B\frac{\alpha%2B1}{2}\right)}- \frac{\pi}{2}\left(\alpha%2B\frac{1}{2} \right) \right],
L_n^{(\alpha)}(-x) \approx \frac{n^{\frac{\alpha}{2}-\frac{1}{4}}}{2\sqrt{\pi}} \frac{e^{-\frac{x}{2}}}{x^{\frac{\alpha}{2}%2B\frac{1}{4}}} \exp\left[2 \sqrt{x \left(n%2B\frac{\alpha%2B1}{2}\right)} \right],
and summarizing by
\frac{L_n^{(\alpha)}\left(\frac x n\right)}{n^\alpha}\approx e^\frac x {2n}\cdot\frac{J_\alpha\left(2\sqrt x\right)}{\sqrt x^\alpha},

where J_\alpha is the Bessel function.

Moreover
L_n^{(\alpha-n)}(x)\approx e^x\cdot {\alpha\choose n}
whenever n tends to infinity.

Recurrence relations

Laguerre's polynomials satisfy the recurrence relations

L_n^{(\alpha%2B\beta%2B1)}(x%2By)= \sum_{i=0}^n L_i^{(\alpha)}(x) L_{n-i}^{(\beta)}(y)

and

L_n^{(\alpha)}(x)= \sum_{i=0}^n L_{n-i}^{(\alpha%2Bi)}(y)\frac{(y-x)^i}{i!},

in particular

L_n^{(\alpha%2B1)}(x)= \sum_{i=0}^n L_i^{(\alpha)}(x)

and

L_n^{(\alpha)}(x)= \sum_{i=0}^n {\alpha-\beta%2Bn-i-1 \choose n-i} L_i^{(\beta)}(x),

or

L_n^{(\alpha)}(x)=\sum_{i=0}^n {\alpha-\beta%2Bn \choose n-i} L_i^{(\beta- i)}(x);

moreover

\begin{align}L_n^{(\alpha)}(x)- \sum_{j=0}^{\Delta-1} {n%2B\alpha \choose n-j} (-1)^j \frac{x^j}{j!}&= (-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n%2B\alpha \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(\alpha%2B\Delta)}(x)\\[6pt]

&=(-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n%2B\alpha-i-1 \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(n%2B\alpha%2B\Delta-i)}(x).\end{align}

They can be used to derive the four 3-point-rules



\begin{align}
L_n^{(\alpha)}(x) & = L_n^{(\alpha%2B1)}(x) - L_{n-1}^{(\alpha%2B1)}(x) = \sum_{j=0}^k {k \choose j} L_{n-j}^{(\alpha-k%2Bj)}(x), \\[10pt]
n L_n^{(\alpha)}(x) & = (n %2B \alpha )L_{n-1}^{(\alpha)}(x) - x L_{n-1}^{(\alpha%2B1)}(x), \\[10pt]
& \text{or } \frac{x^k}{k!}L_n^{(\alpha)}(x) = \sum_{i=0}^k (-1)^i {n%2Bi \choose i} {n%2B\alpha \choose k-i} L_{n%2Bi}^{(\alpha-k)}(x), \\[10pt]
n L_n^{(\alpha%2B1)}(x) & =(n-x) L_{n-1}^{(\alpha%2B1)}(x) %2B (n%2B\alpha)L_{n-1}^{(\alpha)}(x) \\[10pt]
x L_n^{(\alpha%2B1)}(x) & = (n%2B\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x);
\end{align}

combined they give this additional, useful recurrence relations

\begin{align}L_n^{(\alpha)}(x)&= \left(2%2B\frac{\alpha-1-x}n \right) L_{n-1}^{(\alpha)}(x)- \left(1%2B\frac{\alpha-1}n \right) L_{n-2}^{(\alpha)}(x)\\[10pt]

&= \frac{\alpha%2B1-x}n  L_{n-1}^{(\alpha%2B1)}(x)- \frac x n L_{n-2}^{(\alpha%2B2)}(x). \end{align}

A somewhat curious identity, valid for integer i and n, is

 \frac{(-x)^i}{i!} L_n^{(i-n)}(x) = \frac{(-x)^n}{n!} L_i^{(n-i)}(x);

it may be used to derive the partial fraction decomposition

\frac{L_n^{(\alpha)}(x)}{{n%2B \alpha \choose n}}= 1- \sum_{j=1}^n \frac{x^j}{\alpha %2B j} \frac{L_{n-j}^{(j)}(x)}{(j-1)!}=

1- \sum_{j=1}^n (-1)^j \frac{j}{\alpha %2B j} {n \choose j}L_n^{(-j)}(x)

 = 1-x \sum_{i=1}^n \frac{L_{n-i}^{(-\alpha)}(x)  L_{i-1}^{(\alpha%2B1)}(-x)}{\alpha %2Bi}.

Derivatives of generalized Laguerre polynomials

Differentiating the power series representation of a generalized Laguerre polynomial k times leads to



\frac{\mathrm d^k}{\mathrm d x^k} L_n^{(\alpha)} (x)
= (-1)^k L_{n-k}^{(\alpha%2Bk)} (x)\,;

moreover, this following equation holds

\frac{1}{k!} \frac{\mathrm d^k}{\mathrm d x^k} x^\alpha L_n^{(\alpha)} (x)

= {n%2B\alpha \choose k} x^{\alpha-k} L_n^{(\alpha-k)}(x),

which generalizes with Cauchy's formula to

L_n^{(\alpha')}(x) = (\alpha'-\alpha) {\alpha'%2B n \choose \alpha'-\alpha} \int_0^x \frac{t^\alpha (x-t)^{\alpha'-\alpha-1}}{x^{\alpha'}} L_n^{(\alpha)}(t)\,dt.

The derivate with respect to the second variable \alpha has the surprising form

\frac{\mathrm d}{\mathrm d \alpha}L_n^{(\alpha)}(x)= \sum_{i=0}^{n-1} \frac{L_i^{(\alpha)}(x)}{n-i}.

The generalized associated Laguerre polynomials obey the differential equation



x L_n^{(\alpha) \prime\prime}(x) %2B (\alpha%2B1-x)L_n^{(\alpha)\prime}(x) %2B n L_n^{(\alpha)}(x)=0,\,

which may be compared with the equation obeyed by the k-th derivative of the ordinary Laguerre polynomial,



x L_n^{(k) \prime\prime}(x) %2B (k%2B1-x)L_n^{(k)\prime}(x) %2B (n-k) L_n^{(k)}(x)=0,\,

where L_n^{(k)}(x)\equiv\frac{d^kL_n(x)}{dx^k} for this equation only.

This points to a special case (\alpha=0) of the formula above: for integer \alpha=k the generalized polynomial may be written L_n^{(k)}(x)=(-1)^k\frac{d^kL_{n%2Bk}(x)}{dx^k}\,, the shift by k sometimes causing confusion with the usual parenthesis notation for a derivative.

In Sturm-Liouville form the differential equation is

-\left(x^{\alpha%2B1} e^{-x}\cdot L_n^{(\alpha)}(x)^\prime\right)^\prime= n\cdot x^\alpha e^{-x}\cdot L_n^{(\alpha)}(x),

which shows that L_n^\alpha is an eigenvector for the eigenvalue n.

Orthogonality

The associated Laguerre polynomials are orthogonal over [0, ∞) with respect to the measure with weighting function xα e −x:[5]

\int_0^\infty x^\alpha e^{-x} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)dx=\frac{\Gamma(n%2B\alpha%2B1)}{n!} \delta_{n,m},

which follows from

\int_0^\infty x^{\alpha'-1} e^{-x} L_n^{(\alpha)}(x)dx= {\alpha-\alpha'%2Bn \choose n} \Gamma(\alpha').

If \Gamma(x,\alpha%2B1,1) denoted the Gamma distribution then the orthogonality relation can be written as

\int_0^{\infty} L_n^{(\alpha)}(x)L_m^{(\alpha)}(x)\Gamma(x,\alpha%2B1,1) dx={n%2B \alpha \choose n}\delta_{n,m},

The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula)

\begin{align}

K_n^{(\alpha)}(x,y)&{:=}\frac{1}{\Gamma(\alpha%2B1)} \sum_{i=0}^n \frac{L_i^{(\alpha)}(x) L_i^{(\alpha)}(y)}{{\alpha%2Bi \choose i}}\\

&{=}\frac{1}{\Gamma(\alpha%2B1)} \frac{L_n^{(\alpha)}(x) L_{n%2B1}^{(\alpha)}(y) - L_{n%2B1}^{(\alpha)}(x) L_n^{(\alpha)}(y)}{\frac{x-y}{n%2B1} {n%2B\alpha \choose n}} \\

&{=}\frac{1}{\Gamma(\alpha%2B1)}\sum_{i=0}^n \frac{x^i}{i!} \frac{L_{n-i}^{(\alpha%2Bi)}(x) L_{n-i}^{(\alpha%2Bi%2B1)}(y)}{{\alpha%2Bn \choose n}{n \choose i}};\end{align}

recursively

K_n^{(\alpha)}(x,y)=\frac{y}{\alpha%2B1} K_{n-1}^{(\alpha%2B1)}(x,y)%2B \frac{1}{\Gamma(\alpha%2B1)} \frac{L_n^{(\alpha%2B1)}(x) L_n^{(\alpha)}(y)}{{\alpha%2Bn \choose n}}.

Moreover,

y^\alpha e^{-y} K_n^{(\alpha)}(\cdot, y) \rightarrow \delta(y- \, \cdot),

in the associated L2[0, ∞)-space.

Turán's inequalities can be derived here, which is

L_n^{(\alpha)}(x)^2- L_{n-1}^{(\alpha)}(x) L_{n%2B1}^{(\alpha)}(x)= \sum_{k=0}^{n-1} \frac{{\alpha%2Bn-1\choose n-k}}{n{n\choose k}} L_k^{(\alpha-1)}(x)^2>0.

The following integral is needed in the quantum mechanical treatment of the hydrogen atom,

\int_0^{\infty}x^{\alpha%2B1} e^{-x} \left[L_n^{(\alpha)}\right]^2 dx=

\frac{(n%2B\alpha)!}{n!}(2n%2B\alpha%2B1).

Series expansions

Let a function have the (formal) series expansion

f(x)= \sum_{i=0} f_i^{(\alpha)} L_i^{(\alpha)}(x).

Then

f_i^{(\alpha)}=\int_0^\infty \frac{L_i^{(\alpha)}(x)}{{i%2B \alpha \choose i}} \cdot \frac{x^\alpha e^{-x}}{\Gamma(\alpha%2B1)} \cdot f(x) \,dx .

The series converges in the associated Hilbert space L^2[0,\infty), iff

\| f \|_{L^2}^2�:= \int_0^\infty \frac{x^\alpha e^{-x}}{\Gamma(\alpha%2B1)} | f(x)|^2 dx = \sum_{i=0} {i%2B\alpha \choose i} |f_i^{(\alpha)}|^2 < \infty.

A related series expansion is

 f(x)= e^{\frac{\gamma}{1%2B\gamma} x} \cdot \sum_{i=0} \frac{L_i^{(\alpha)}\left(\frac{x}{1%2B\gamma}\right)}{(1%2B\gamma)^{i%2B\alpha%2B1}}  \sum_{n=0}^i \gamma^{i-n} {i \choose n} f_n^{(\alpha)};

in particular

e^{-\gamma x} \cdot L_n^{(\alpha)}(x(1%2B\gamma))= \sum_{i=n} \frac{L_i^{(\alpha)}(x)}{(1%2B\gamma)^{i%2B\alpha%2B1}} \gamma^{i-n} {i \choose n},

which follows from

L_n^{(\alpha)}\left(\frac{x}{1%2B\gamma} \right)= \frac{1}{(1%2B\gamma)^n} \sum_{i=0}^n \gamma^{n-i} {n%2B\alpha \choose n-i} L_i^{(\alpha)}(x).

Secondly,

\frac{x^{\alpha-\beta} f(x)}{\Gamma(\alpha-\beta%2B1)}= {\alpha \choose \beta} \sum_{i=0} \frac{L_i^{(\beta)}(x)}{{\beta%2Bi \choose i}} \sum_{n=0}^i (-1)^{i-n} {\alpha-\beta \choose i-n} {\alpha%2Bn \choose n} f_n^{(\alpha)},

a consequence derived from

\frac{x^{\alpha-\beta} L_n^{(\alpha)}(x)}{\Gamma(\alpha-\beta%2B1)} = {\alpha \choose \beta} {\alpha%2B n \choose n} \sum_{i=n} (-1)^{i-n} {\alpha-\beta \choose i-n} \frac{L_i^{(\beta)}(x)}{{\beta%2Bi \choose i}}

for \operatorname{Re}{(2\alpha- \beta)}>-1.

More and other examples

Monomials are represented as

\frac{x^n}{n!}= \sum_{i=0}^n (-1)^i {n%2B \alpha \choose n-i} L_i^{(\alpha)}(x)= (-1)^n \sum_{i=0}^n L_i^{(\alpha-i)}(x) {-\alpha \choose n-i},

binomials have the parametrization

{n%2Bx \choose n}= \sum_{i=0}^n \frac{\alpha^i}{i!} L_{n-i}^{(x%2Bi)}(\alpha).

This leads directly to

e^{-\gamma x}= \sum_{i=0} \frac{\gamma^i}{(1%2B\gamma)^{i%2B\alpha%2B1}} L_i^{(\alpha)}(x) \qquad \left(\text{convergent iff }\operatorname{Re}{(\gamma)} > -\frac{1}{2}\right)

and, even more generally,

 \frac{x^\beta e^{-\gamma x}}{\Gamma(\beta%2B1)}= {\alpha%2B\beta \choose \alpha} \sum_{i=0} \frac{L_i^{(\alpha)}(x)}{ {\alpha%2Bi \choose i}} \sum_{j=0}^i \frac{(-1)^j}{(1%2B\gamma)^{\alpha%2B \beta%2B j%2B 1}} {\alpha%2B\beta%2Bj \choose j} {\alpha%2Bi \choose i-j}.

For \beta a non-negative integer this simplifies to

\frac{x^n e^{-\gamma x}}{n!}= \sum_{i=0} \frac{\gamma^i L_i^{(\alpha)}(x)}{(1%2B\gamma)^{i%2Bn%2B\alpha%2B1}} \sum_{j=0}^n (-1)^{n-j} \gamma^j {n%2B\alpha \choose j} {i \choose n-j},

for \gamma=0 to

\frac{x^\beta}{\Gamma(\beta%2B1)} = {\alpha%2B \beta \choose \alpha} \sum_{i=0} (-1)^i {\beta \choose i} \frac{L_i^{(\alpha)}(x)}{{\alpha%2Bi \choose i}}, or
\frac{x^\beta L_n^{(\gamma)}(x)}{\Gamma(\beta%2B1)} = {\alpha%2B \beta \choose \alpha} \sum_{i=0} \frac{L_i^{(\alpha)}(x)}{{\alpha%2Bi \choose i}}\sum_{j=0}^n (-1)^{i-j} {n%2B \gamma \choose n-j} {\beta%2Bj \choose i} {\alpha%2B \beta%2B j \choose j}.

Jacobi's theta function has the representation

\sum_{k \in \mathbb{Z}} e^{-k^2 \pi x}= \sum_{i=0} L_i^{(\alpha)}\left(\frac{x}{t}\right) \sum_{k \in \mathbb{Z}} \frac{(k^2 \pi t)^i}{(1%2B k^2 \pi t)^{i%2B\alpha%2B1}};

the Bessel function J_\alpha can be expressed (using an arbitrarily chosen parameter t) as

\frac{J_\alpha(x)}{\left( \frac{x}{2}\right)^\alpha}= \frac{e^{-t}}{\Gamma(\alpha%2B1)} \sum_{i=0} \frac{L_i^{(\alpha)}\left( \frac{x^2}{4 t}\right)}{{i%2B \alpha \choose i}} \frac{t^i}{i!},

and thus

L_n^{(\alpha)}(x)=\frac 1 {n!} \int_0^\infty t^{n%2B\alpha} e^{x-t} \frac {J_\alpha (2\sqrt{x t})}{\left(\sqrt{x t}\right)^\alpha} dt.

Gamma function has the parametrization

\Gamma(\alpha)=x^\alpha \sum_{i=0} \frac{L_i^{(\alpha)}(x)}{\alpha%2Bi} \qquad \left(\Re(\alpha)<\frac 1 2\right);

the lower incomplete Gamma function has the representations

\frac{\gamma(s;z)}{t^s \Gamma(s)}= \frac{\left(\frac{z}{t}\right)^\alpha}{\Gamma(\alpha%2B1)} \sum_{i=0} \frac{L_i^{(\alpha)}\left(\frac{z}{t}\right)}{{\alpha%2Bi \choose i}} \sum_{j=0}^i \frac{(-1)^j}{(1%2Bt)^{s%2Bj}}{s-1%2Bj \choose j}{\alpha-1%2Bi \choose i-j},
\frac{\gamma(s;z)}{t^s \Gamma(s)}= {\alpha%2Bs \choose \alpha%2B1} \sum_{i=0} \frac{{\alpha%2B i%2B1\choose i%2B1}- L_{i%2B1}^{(\alpha)}\left( \frac{z}{t}\right)}{{\alpha%2B i%2B1\choose i}} \sum_{j=0}^i \frac{(-1)^j}{(1%2Bt)^{\alpha%2B1%2Bs%2Bj} } {\alpha%2Bs%2Bj \choose j}{\alpha%2Bi%2B1 \choose i-j}.

and

\gamma(s,z)=\frac{\gamma^s}{\Gamma(1-s)} \sum_{i=0} \frac{L_{i%2B1}^{(-s)}(0)-L_{i%2B1}^{(-s)}\left(\frac{z}{\gamma}\right)}{(1%2B\gamma)^{i%2B1}} \sum_{n=0}^i \gamma^{i-n} \frac{{i \choose n}}{n%2B1-s};

The upper incomplete gamma function then is

\begin{align}\frac{\Gamma(s,z)}{z^s e^{- z}}&= \sum_{k=0} \frac{L_k^{(\alpha)}(z)}{(k%2B1) {k%2B1%2B\alpha-s \choose k%2B1}} \qquad \left(\Re\left(s-\frac \alpha 2 \right)< \frac 1 4 \right)\\

&= \sum_{k=0} L_k^{(\alpha)}(z\, t) \cdot \frac{_2F_1\left(1%2B\alpha%2Bk, 1%2Bk; 2%2B\alpha%2Bk-s; \frac{t-1}{t}\right)}{t^k(k%2B1){1%2B\alpha%2Bk-s \choose 1%2Bk}} \\
&= t^s \sum_{k=0} L_k^{(\alpha)}(z\, t) \cdot \frac{_2F_1\left(1-s, 1%2B\alpha-s; 2%2B\alpha%2Bk-s; \frac{t-1}{t}\right)}{(k%2B1){1%2B\alpha%2Bk-s \choose 1%2Bk}}\\
&= t^{1%2B\alpha} \sum_{k=0} L_k^{(\alpha)}(z \, t) \cdot \frac{_2F_1\left(1%2B\alpha%2Bk, 1%2B\alpha-s; 2%2B\alpha%2Bk-s; 1-t \right)}{(k%2B1){1%2B\alpha%2Bk-s \choose 1%2Bk}},\end{align}

where _2F_1 denotes the hypergeometric function.

Multiplication theorems

Erdélyi gives the following two multiplication theorems [6]

As a contour integral

The polynomials may be expressed in terms of a contour integral

L_n^{(\alpha)}(x)=\frac{1}{2\pi i}\oint\frac{e^{-\frac{x t}{1-t}}}{(1-t)^{\alpha%2B1}\,t^{n%2B1}} \; dt

where the contour circles the origin once in a counterclockwise direction.

Relation to Hermite polynomials

The generalized Laguerre polynomials are related to the Hermite polynomials:

H_{2n}(x) = (-1)^n\ 2^{2n}\ n!\ L_n^{(-1/2)} (x^2)

and

H_{2n%2B1}(x) = (-1)^n\ 2^{2n%2B1}\ n!\ x\ L_n^{(1/2)} (x^2)

where the Hn(x) are the Hermite polynomials based on the weighting function exp(−x2), the so-called "physicist's version."

Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator.

Relation to hypergeometric functions

The Laguerre polynomials may be defined in terms of hypergeometric functions, specifically the confluent hypergeometric functions, as

L^{(\alpha)}_n(x) = {n%2B\alpha \choose n} M(-n,\alpha%2B1,x) =\frac{(\alpha%2B1)_n} {n!}  \,_1F_1(-n,\alpha%2B1,x)

where (a)_n is the Pochhammer symbol (which in this case represents the rising factorial).

Relation to Bessel functions

In terms of modified Bessel functions (Bessel polynomials) these following relations hold:

\begin{align}L_n^{(\alpha)}(x)

=& e^\frac x 2 \left(\frac x 4\right)^{n%2B\frac 12}\frac{2 }{\sqrt \pi (n%2B1)! {-\frac 1 2 \choose n%2B1}}  \cdot \\
&\cdot\sum_{k=0}^n (-1)^{k%2B1}{2n%2B1 \choose n-k} \frac{{n%2B\alpha \choose n}{\alpha%2B2n%2B1 \choose n-k}}{{n-k%2B\alpha \choose n-k}} \left(k%2B\frac 1 2 \right) K_{k%2B\frac 1 2}\left(\frac x 2 \right)\\
= &e^\frac{x}{2} \left(\frac{4}{x}  \right)^{n%2B\alpha%2B\frac{1}{2}} \Gamma\left(\alpha%2Bn%2B\frac{1}{2} \right) {\alpha%2Bn \choose n}  \cdot \\
& \cdot \sum_{k=n} \frac{{-2n-1-2\alpha \choose k-n} {-2n-1-\alpha \choose k-n}}{{-\alpha-1 \choose k-n}} \left(\alpha%2B\frac{1}{2}%2Bk \right) I_{\alpha%2B\frac 1 2%2Bk} \left(\frac x 2 \right) \end{align},

or further elaborated

L_n^{(\alpha)}(x)= \frac 2 {4^n (2n%2B1) {-\frac 1 2 \choose n}} \sum_{k=0}^n \left(k%2B\frac 1 2 \right) \frac{{2n%2B1 \choose n-k}}{{n \choose k}^2} {n%2B\alpha \choose k}{2n%2B\alpha%2B1 \choose n-k} \frac{x^{n-k}}{(n-k)!}L_k^{(-2k-1)}(x).

Notes

  1. ^ A&S p. 781
  2. ^ A&S p.509
  3. ^ A&S p.510
  4. ^ A&S p. 775
  5. ^ A&S p. 774
  6. ^ C. Truesdell, "On the Addition and Multiplication Theorems for the Special Functions", Proceedings of the National Academy of Sciences, Mathematics, (1950) pp.752-757.

References

External links